Trees most vulnerable in old-growth forests across world.
As global warming progresses, look for increasing expanses of majestic forests worldwide to become short and scrubby.
That is the implication of a new study that applies a well-established principle of fluid flow to the inner workings of vegetation. The analysis doesnt attempt to specify timing or specific locations where such shifts in vegetation would occur. Instead, it uses the principle known as Darcys law to explore the general types of vegetation most likely and least likely to survive rising temperatures and extreme drought.
Among the most vulnerable types of trees, the study finds, are conifers around the world, particularly the tallest specimens in old-growth forests. Their loss would have ominous implications for the natural carbon storage that these forests perform, the study suggests.
Such a shift in vegetation wouldnt be limited to regions with typically dry climates, such as the US Southwest, the study notes. The principle also applies to trees in historically wet or cold forests, according to scientists from the Los Alamos National Laboratory (LANL) and the US Geological Survey (USGS) who conducted the study.
All vascular plants those with tissue to distribute water and nutrients throughout the plant obey Darcys law, notes Nathan McDowell, a forest ecologist at LANL and the lead author of the study, which was published this week by Nature Climate Change.
Even wet places, when they have their very infrequent dry periods, will be significantly hotter than those trees have ever experienced, says Dr. McDowell subjecting the forests to stresses that would increase their vulnerability to wildfires, bug infestations, and lack of moisture.Regions where rainfall is projected to increase with global warming could be spared relatively early forest loss. Yet even these regions will have dry periods, just because of the variable nature of the climate system, McDowell adds. So the combination of drought and added warmth could threaten these forests as well.
The new study grew out of work published online by Nature Climate Change in 2012 that looked at temperatures contribution to tree losses in the Southwest over a 1,000-year period.
It found that temperatures influence on the amount of water that trees release through evapotranspiration was at least as influential in stressing trees as was the amount of rain or snow that the forests received in winter.
As temperatures rise, the atmosphere is able to hold more water vapor. But the gap between what it can hold and what it does hold can be wide. Over land, the atmosphere works to close that gap by drawing moisture from plants and soil. The hotter and drier the atmosphere gets, the more water it draws.
Trees get stressed when the atmosphere draws water from them faster than they can replace it from the soil.
The 2012 study showed that tree growth, or lack thereof, during the past century was super highly correlated with this evaporative demand from the atmosphere, says McDowell, who, along with USGS colleague Craig Allen, was part of a 15-member team that conducted the study. As that demand goes up, tree growth goes down.
Based on climate projections, the team found that the increased demand during the warm seasons would subject the Southwests forests to higher levels of stress than levels triggered by any drought in the past 1,000 years. Similar conditions could prevail in other water-stressed forests globally, the team added.
The new study takes that conclusion a step further by using Darcys law developed in the 19th century and adapted in 1981 to describe the flow of fluids through plants to see in general terms which types of plants would be the winners and losers.
Taking into account features such as tree height and leaf area as well as evaporative demand, McDowell and Dr. Allen found that tall trees with large leaf areas and a relatively slow movement of water through them are the most vulnerable.
These trees are replaced by short, shrubby plants capable of surviving hotter, drier conditions. This would change the nature of the forest ecosystems and the services they provide sequestering less CO2 and altering the landscapes hydrology, which can affect community water supplies.
The study is important not just for the application of Darcys law as a tool for predicting the arboreal winners and losers, notes Neil Pederson, a senior ecologist at Harvard Forest, an outdoor lab spanning more than 3,700 acres of woods in central Massachusetts and one of the National Science Foundations long-term ecological research stations. It also is a reminder that Darcys law doesnt let wetter regions, like the Northeast, off the hook.
Some people dont think our trees are susceptible to drought because it rains so much, he says. But trees competition for light, driving them to their maximum height, puts them closer to the edge of drought stress.
The eastern US has experienced a wetting trend over the past 100 years. Some places, such as New England, havent experienced a serious, historic drought in more than 40 years. I think this masks the vulnerability of the forests in the region, Dr. Pederson says. But, he adds, the diversity of tree species in the region may help buffer it from experiencing the wholesale landscape changes that the Southwest appears to face.
© Christian Science Monitor
Follow this link to join our WhatsApp group: Join Now
Be Part of Quality Journalism |
Quality journalism takes a lot of time, money and hard work to produce and despite all the hardships we still do it. Our reporters and editors are working overtime in Kashmir and beyond to cover what you care about, break big stories, and expose injustices that can change lives. Today more people are reading Kashmir Observer than ever, but only a handful are paying while advertising revenues are falling fast. |
ACT NOW |
MONTHLY | Rs 100 | |
YEARLY | Rs 1000 | |
LIFETIME | Rs 10000 | |